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Stochastic resonance at higher harmonics in monostable systems

A. N. Grigorenko, S. I. Nikitin, and G. V. Roschepkin
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The nonlinear response of a system subject to a periodic force in the presence of noise is investigated. It is
shown that a physical system of a general type manifests stochastic resonance at higher harmonics. The
stochastic resonance curves are calculated for several monostable systems. Higher harmonic stochastic reso-
nance is measured on a monostable part of a domain wall pinned by a magnetic defect in a ferrite-garnet film.
@S1063-651X~97!50611-8#

PACS number~s!: 05.40.1j, 02.50.Fz, 75.60.Ch
-
t

c
n

ce

e
o
en
r-
R
b

,
ix

e
e
ti

pr
d

bi
m

on-
tial
n

e

Stochastic resonance~SR!, which is a noise induced en
hancement of the signal-to-noise ratio, has attracted a lo
attention during the last decade@1,2#. Today, SR is recog-
nized as a general principle of the signal-to-noise enhan
ment in different types of systems. It may play an importa
role not only in the periodic recurrence of the Earth’s i
ages but in the neuron operation and sensory biology@3#.
One of the characteristic features of stochastic resonanc
systems without a threshold is bistability. Although it is n
difficult to find a monostable system where a signal is
hanced by external noise@4#, the signal-to-noise ratio gene
ally has a tendency to decrease with a noise increase.
cently it was shown that the signal-to-noise ratio can
enhanced by noise for underdamped single-well systems@5#
and for a special type of monostable systems@6#. Other in-
teresting recent examples are given in@7#. On the other hand
new results were obtained in investigations of harmonic m
ing @8,9# in stochastic resonance.

In this paper we demonstrate that stochastic resonanc
higher harmonics does not require bistability to be observ
It is natural to check mixed harmonics for the stochas
resonance behavior. Indeed, the addition of noise of ap
priate intensity pushes a system driven by a small perio
force to the nonlinear region, which leads to an increase
the signals at higher harmonics. If the signal increase is
ger than the increase of the noise component of system
tion, the stochastic resonance peak will be observed.
561063-651X/97/56~5!/4907~4!/$10.00
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To get the main features of the phenomenon, let us c
sider an overdamped particle moving in a parabolic poten
U0(x)5ax2/2 perturbed by a small nonlinear correctio
u(x),

ẋ52ax2u8~x!1 f 0cos~v0t !1j~ t ! , ~1!

where f 0cos(v0t) is a small periodic force andj(t) is noise
with ^j( t̄ )j(t)&52Dd( t̄ 2t).

Writing the solution as

x~ t !5X0~ t !1Xn~ t !1h~ t ! , ~2!

whereX0 is small vibrations produced by the periodic forc
in the absence of noise and the nonlinearity,Xn is the
Ornstein-Uhlenbeck process induced by noise, andj(t) is
the correction produced byu(x), we get in the first order of
u(x):

ḣ52ah2u8„X0~ t !1Xn~ t !… , ~3!

and

^h~ t̄ !h~ t !&5exp@2a~ t̄ 1t !#E
2`

t̄ E
2`

t

3exp@a~ t̄ 1t!#K~ t̄ ,t!d t̄ dt ,

K~ t̄ ,t!5^u8„X0~ t̄ !1Xn~ t̄ !…u8„X0~t!1Xn~t!…& .
~4!
R4907 © 1997 The American Physical Society
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An ensemble averaging yields

K~ t̄ ,t!5E
2`

` E
2`

`

u8„X0~ t̄ !1 x̄ …r1~ x̄ 2x, t̄ 2t!

3u8„X0~t!1x…r0~x!d x̄dx , ~5!

wherer0(x)5Aa/2pDexp(2 ax2/2D) is the stationary dis-
tribution andr1( x̄ 2x, t̄ 2t) is the transitional probability
of the Ornstein-Uhlenbeck process.

For simplicity we assume that the frequencyv0 is much
smaller thana, so that the main contribution to the integr
Eq. ~5! comes from the regiont̄ 2t@1/a, where r1( x̄

2x, t̄ 2t)'r0( x̄ ). Then, developing Eq.~5! over X0 and
taking noise in the zero approximation, we get the final res
for the signal-to-noise ratio at thenth harmonic (n>2!:

Rnv5
pqn

2f 0
2n

2n21~n! !2a2nDDn
, ~6!

whereDn is the detection frequency bandwidth and

qn5E
2`

`

r0~x!u~n11!~x!dx5E
2`

` A a

2pD

3expS 2
ax2

2D Du~n11!~x!dx , ~7!

whereu(n)(x) is the nth spatial derivative. Results for fre
quency mixing are analogous to Eq.~6!. Note that an even
potentialu(x) @u(x)5u(2x)# produces odd harmonics (Rn

FIG. 1. The signal-to-noise ratio for the parabolic potent
ax2/2 with a53 perturbed by a small nonlinearityu(x)
5eexp@2(x2x0)

2/2d2# with x054, 2d250.3 as a function of the
noise strength. Boxes correspond to the exact first order resul~6!
and open circles are obtained by the computer simulation of
system motion. The frequency of the periodic force used in co
puter modeling wasv050.4, the force wasf 052.0.
lt

disappears for alln52m) and an odd potentialu(x) @u(x)
52u(2x)# generates only even harmonics as required
the symmetry arguments.

We can anticipate stochastic resonance at higher harm
ics from Eqs.~6!, ~7!. If the nonlinearity is not concentrate
at the equilibrium positionx50, then the integral~7! will
have an effective exponential factor exp(2al2/D), wherel is
an effective length that can be attributed to the poten
u(x). This factor together with the factorD in the denomi-
nator will lead to the SR peak at mixed harmonics.

To be specific, let us consider the case where the non
earity is located at some pointx0 :

u~x!5e expS 2
~x2x0!2

2d2 D . ~8!

Figure 1 demonstrates the signal-to-noise ratio at the
ond harmonic calculated with Eqs.~6!, ~7!. The stochastic
resonance curve for the potential~8! goes through the mini-
mum Rmin at Dmin'ad4/x0

2, has a pronounced maximum
Rmax at Dmax'ax0

2/9, and displays a second maximum atD
'4ax0

2/3 ~it is assumed thatx0 /d is large!. A more detailed
behavior of the stochastic resonance peak is given in Fig

It is possible to obtain an exact analytical result for t
curve shown in Fig. 1. The straightforward evaluation yie

R2v5
p«2f 0

4

8a5d8Dn

lb6

12b
~bl23!2exp~2bl! , ~9!

l

e
-

FIG. 2. The signal-to-noise ratio as a function of the no
strength near the stochastic resonance peak. Boxes represe
exact first order result~6! and open circles correspond to the com
puter simulation. The parameters of the potential and paramete
the simulation are the same as in Fig. 1.
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wherel5(x0 /d)2 andb5ad2/(ad21D). The qualityQ of
the SR curve, which is defined as the ratioRmax/Rmin @9#, for
the casel@1 is equal to

Q5
22314exp~l210!

~l21!6~l24!2~l29!
. ~10!

The resonance qualityQ for the discussed potential de
pends upon the degree of localization of the nonlinearity~the
ratio x0 /d) and can be arbitrarily large. The resonance pe
disappears ford.x0/4 whereQ,1. Figure 3 presents SR
curves for three different values ofx0 /d.

The higher harmonic resonance for the nonlinear corr
tion ~8! in the noise regionD@ad2 can be approximated a

R2v5
C

D6S ax0
2

D
23D 2

expS 2
ax0

2

D D , ~11!

whereC is a constant. This expression is analogous to
conventional SR formula. Such an analogy was also no
for three main types of SR—the bistable potential model,
fire and reset model, and the simple threshold model@3#. The
derivation given above provides a clear physical reason
this analogy. Indeed, signals in SR are generated at s
nonzero energy. In the case of Eq.~8! this is the energyU0

5ax0
2/2, where the nonlinearity is located. The probabil

to find the system at this energy is proportional
exp(2U0 /D). It results in the factor exp(22U0 /D) for the

FIG. 3. The signal-to-noise ratio as a function of the no
strength for three different degrees of localization of the nonlin
potential ~8!: 2d252.1 ~solid line!, 2d251.75 ~dashed line!, 2d2

50.7 ~dotted line!. The calculation is made using Eqs.~6! and ~7!
with a53, x054, ande;1/d in order to obtain comparable value
of the signal-to-noise ratio. The diverging tail of the curve w
2d250.7 atD→0 almost coincides with they axes.
k

c-

e
d
e
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e

correlation function, which is the product of two system c
ordinates taken at different times. The preexponential fac
arises from the power spectrum of noise and the ability of
system to generate signals.

Thus, we have shown that monostable systems dem
strate stochastic resonance at higher harmonics. The m
promising is a system with a nonlinearity concentrated
some energy, as Eqs.~6! and~7! indicate. We have checke
the conclusion by direct experiments. A local part of an is
lated straight domain wall in a thin ferrite-garnet film wa
studied. An isolated domain wall was produced by an ex
nal magnetic field gradient and was placed near a magn
defect. The domain wall was subjected to an action of p
odic and noise-like magnetic fields and its response w
measured as a function of the strength of the external ran
magnetic field. The experimental installation and experim
tal procedures are described in detail in@9,10#.

The domain wall moves in a parabolic defect potent
when the amplitude of the driving force is smaller than t
defect strength. If the amplitude of the driving field is bigg
than the defect strength, the domain wall moves in a pa
bolic potential of the external gradient field. Thus, all no
linearity of the total potential of the domain wall is conce
trated at the defect energy and we can anticipate that
monostable domain wall demonstrates stochastic reson
at higher harmonics. The measured signal-to-noise rati
the third harmonic as a function of the noise strength
shown in Fig. 4.~The signal at the second harmonic was ze
due to the symmetry of the potential.! In experiments the
film of ~LuBi!3~FeGa!5O12 ferrite-garnet was placed in th
gradient field of 15 kOe/cm. The film parameters are as
lows: thickness: 30 mm; the anisotropy field: 1800 Oe; m

r

FIG. 4. The signal-to-noise ratio of a local part of a domain w
as a function of the strength of external noiselike magnetic fie
measured values~boxes!, and the computer simulation of the sy
tem motion in the potential~12! ~circles!. The parameters of the
potential that was used for the modeling area56, b544, f 0

51.4, v053.
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netization: 80 G; the stripe period: 25 mm; the domain w
mobility: 103 cm/~Oe sec!. The frequency of the driving wa
1.1 kHz, the detection frequency was 3.3 kHz, the amplitu
of the periodic field was 50 mOe. One can see the stocha
resonance peak at the magnetic field noise stren
Dmf50.018~mOe!2/Hz that corresponds to the noise streng
D5m2Dmf50.018 cm2/sec, wherem is the domain wall mo-
bility. This noise strength should be compared with the
fect energymHdd50.016 cm2/sec, whereHd50.4 Oe is the
defect field andd50.4 mm is the defect range. The pea
position and the resonance quality depend upon the ma
tude of the external field gradient.

We have performed a direct computer simulation of
domain wall motion. The monostable potential of a local p
of domain wall was chosen in the form

U~x!5
ax2

2
1

bx2

2
expS 2

2x2

d2 D , ~12!

where a is proportional to the value of the external fie
gradient,b and d describe the defect strength and rang
respectively. The standard procedure of calculations
s

tt
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used. The results of calculations are in good agreement
measured values; see Fig. 4. A computer simulation was
made for the system moving in the potential~8!. The results
are represented in Figs. 1 and 2. They are close to the re
that were obtained with the help of Eq.~7!.

In conclusion, we have shown, both theoretically and
perimentally, that the higher harmonic stochastic resona
does not require bistability to be observed. We have ca
lated the noise induced harmonic mixing for the case o
small nonlinearity and measured the stochastic resona
peak at the third harmonic for a monostable part of an i
lated domain wall. The quality of the stochastic resonanc
higher harmonics should be high when the nonlinearity o
system is located at some energy. The proposed phenom
can be applied in situations where conventional stocha
resonance is obliterated by the interference of the driving
measuring circuits, for example, in scanning tunneling m
croscopy@11#.

The authors thank T. Itina for the help with the compu
simulation. This work was supported by INTAS Grant N
94-1720 and the Russian Foundation for Basic Research
Grant No. 96-02-18956 and Grant No. 96-02-19608.
E
.

l.

,

@1# R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453
~1981!; R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellu
34, 10 ~1982!; C. Nicolis, Tellus34, 1 ~1982!; S. Fauve and F.
Heslot, Phys. Lett.97A, 5 ~1985!.

@2# B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Le
60, 2626 ~1988!; L. Gammaitoni, F. Marchesoni, E
Menichella-Saetta, and S. Santucci,ibid. 62, 349~1989!; M. I.
Dykman, R. Manella, P. V. E. McClintock, and N. G. Stock
ibid. 65, 2606~1990!; A. N. Grigorenko, P. I. Nikitin, and V.
I. Konov, Pis’ma Zh. Eksp. Teor. Fiz.52, 1182 ~1990!
@JETP Lett.52, 993 ~1990!#.

@3# K. Wiesenfeld and F. Moss, Nature~London! 373, 33 ~1995!;
J. J. Collins, C. C. Chow, and T. T. Imhoff,ibid. 376, 236
~1995!.

@4# N. G. Stocks, N. D. Stein, and P. V. E. McClintock, J. Phys.
26, L385 ~1993!.

@5# N. G. Stocks, P. V. E. McClintock, and S. M. Soskin, Euro
.

phys. Lett.21, 395~1993!; I. K. Kaufmanet al., Phys. Lett. A
220, 219 ~1996!.

@6# J. M. G. Vilar and J. M. Rubi, Phys. Rev. Lett.77, 2863
~1996!.

@7# J. M. G. Vilar, A. Perez-Madrid, and J. M. Rubi, Phys. Rev.
54, 6929 ~1996!; J. M. G. Vilar and J. M. Rubi, Phys. Rev
Lett. 78, 2882~1997!.

@8# M. I. Dykman et al., Phys. Rev. E49, 1935 ~1994!; V.
Schneidman, P. Jung, and P. Hanggi, Phys. Rev. Lett.72, 2682
~1994!; R. Bartussek, P. Hanggi, and P. Jung, Phys. Rev. E49,
3930 ~1994!; M. I. Dykman et al., Appl. Phys. Lett.67, 308
~1995!; M. I. Dykman et al., Phys. Rev. E54, 2366~1996!.

@9# A. N. Grigorenko, P. I. Nikitin, and G. V. Roschepkin, J. App
Phys.79, 6113~1996!.

@10# A. N. Grigorenko, P. I. Nikitin, A. N. Slavin, and P. Y. Zhou
J. Appl. Phys.76, 6335~1994!.

@11# A. N. Grigorenko and P. I. Nikitin, Appl. Surf. Sci.92, 466
~1996!.


